

Biofilesonline

Your gateway to Biochemicals and Reagents for Life Science Research

Biofiles Online allows you to:

- Easily navigate the content of the current Biofiles issue
- Access any issue of Biofiles
- Subscribe for email notifications of future eBiofiles issues

Register today for upcoming issues and eBiofiles announcements at
sigma.com/biofiles

Highlights from this issue:

Cell culture contamination is one of the most challenging issues for life science research today. Cell cultures are vulnerable to a wide variety of contaminants, but mycoplasma and cross-contaminated/misidentified cell lines are particularly challenging to control. In this issue we discuss some useful measures to keep your cell lines authentic and contamination free.

Biofilescontents

Introduction 3
Antibiotics 5
Mycoplasma
Detection/Elimination 14
Endotoxin Testing 16
Cell Culture Equipment 17

Coming next issue:
The next issue of Biofiles highlights current research in the areas of Alzheimer's, Parkinson's, and Huntington's disease as representative of major efforts
to delineate key events in the development of neurodegenerative diseases. Neurodegenerative diseases affect the central nervous system causing progressive nervous system dysfunction. These debilitating and incurable conditions are characterized by loss of neuronal cell function and are often associated with atrophy of the affected nervous system structures. Products featured in this issue include antibodies, proteins, peptides and assays which represent a broader set of tools offered to support basic research in neurodegenerative disease.

Technical content:
Don Finley
Market Segment Manager
don.finley@sial.com

Introduction

Don Finley

Market Segment Manager
don.finley@sial.com

Life science research using cell cultures has resulted in numerous improvements to the treatment of human disease. In addition, with the advent of stem cell technology, cultured cells are themselves becoming therapeutics. In this light, cell culture contamination could be one of the biggest hindrances to scientific progress today.

Researchers typically think of cell culture contamination in terms of microorganisms such as bacteria, fungi, viruses, and protozoa, but contamination can also be caused by chemical contamination as well as contamination by other cell lines — for example HeLa cells. The difficulty in controlling a particular contaminant is often related to its ease of detection. Most bacterial and fungal contaminations will cause the medium to turn cloudy and quickly kill the cells in culture. Although losing cells and any data relating to the current experiment is never desirable, the damage, however severe, is limited. Comparatively, viruses are difficult to detect. They cannot be detected by conventional light microscopy and may not be detectable by electron microscopy if they are integrated in the host cell genome. However, viruses have stringent requirements for the type of cells they can infect and, as they often result in the death of the cell lines they infect, are self limiting and are much rarer than other types of contamination. The two most worrisome contaminants researchers face today are mycoplasma and cross-contamination and/ or misidentification of cell lines.

Mycoplasma are very simple bacteria that do not possess cell walls. As such, they are not killed by typical antibiotics used in cell culture, and are not detectable by conventional light microscopy. In addition, they can grow to very high concentrations in cell culture without causing the media to become cloudy as is seen with other microorganisms. Since mycoplasma have evolved as parasites they are difficult to culture in the absence of mammalian cells. They do not usually kill the mammalian cells they contaminate, but can greatly influence the cells they infect by altering cellular metabolism, causing chromosomal aberrations, slowing cell growth, and interfering with cell attachment. n short, they are likely to influence the results of most experiments performed using affected cell lines. Contaminations can be undetected for long periods of time, and if left unchecked they can contaminate an entire operation or facility.

Misidentified or cross-contaminated cell lines in some ways are the most concerning problem of all. Research based on the premise that, for example a cell line is representative of human colon cancer when in actuality it is an ovarian cancer cell line or perhaps a cell line from a different species, can call the results of that research into question. Considering that a researcher may spend many years performing research using a particular cell line and publish numerous papers on that research, it is easy to understand why this problem has many scientists very uneasy.

How big is the problem of contamination? Based on studies by FDA, ATCC, and others, it is estimated that 11% to 15% (or more) of all cell cultures today are contaminated with mycoplasma. Furthermore, over the past 25 years, numerous studies combined with the experiences of various cell culture repositories, indicate that 18 to 36% of cell lines in existence today are misidentified ${ }^{1}$. This level of contamination and misidentification seems ironic, given that the causes of cell culture contamination are well understood; the methods of prevention, detection, and elimination of mycoplasma are commonplace; and a variety of methods for cell line identification, such as STR analysis, isoenzyme studies, and DNA fingerprinting are readily available.

It is thought that some labs are reluctant to test for cell line contamination for fear that the results could call into question many years of work, and lead to publications being retracted because of erroneous data. As understandable as this reluctance might be, ultimately we all are affected. Erroneous, misinterpreted data not only are economically wasteful but ultimately slow scientific progress. There are a growing number of scientific publications calling for scientists to get control of cell culture contamination and ensure cell lines are correctly identified prior to publication ${ }^{2-9}$. Unfortunately, this is not yet a requirement for publication, and scientists continue to publish using cell lines without first verifying their identity or testing for mycoplasma or other contaminants.

It has been suggested that the high levels of contaminated cultures seen relate primarily to labs lacking a good plan to minimize and test for contamination and cell line mix-ups, as well as a failure to adhere to good aseptic cell culture techniques. Labs that have in place a good plan to reduce cell culture contaminations will usually have a much lower incidence of cell contamination than those labs that do not have such a plan.
The key thing to remember is that while contamination cannot be completely eliminated it can be minimized and controlled. At Sigma, we have in place stringent process controls and we extensively test to ensure the products we offer for cell culture are contamination free. Our line of ZFN-engineered cell lines and the ECACC cell lines we offer are well characterized, correctly identified, and are free of contaminants. We test our cell culture sera, media, and reagents for endotoxin and bacterial contamination, and offer many animal component-free products to eliminate potential risks of TSE and animal virus contamination.

The products included in this Biofiles issue represent some very useful tools to help make contamination control easier for researchers. We offer a comprehensive line of antibiotics that, when used appropriately, reduce the chances of unwanted contamination. We have a number of products to help reliably, effectively, and economically detect and if necessary eliminate mycoplasma contamination from cultures. The Labware products in this issue are useful in contamination control and detection, and include microscopes, glove bags, and sterile plasticware.

Ultimately, we at Sigma feel strongly that easing the risk of cell culture contamination is part of our mission in research cell culture. In addition to products, we provide a wealth of technical information, both on-line and in print, to help you reduce your risk of contamination. To view our on-line version and to request a copy of our Sigma-ECACC Fundamental Techniques in Cell Culture Laboratory Handbook, please go to:
sigma.com/ecacchandbook
To request a copy of our 2011-2012
Cell Culture Manual, please go to

sigma.com/cellculturemanual

References:

1. Editorial, Identity Crisis, Nature 457, 935-936 (2009)
2. Podolak, E. Ending Cell Line Contamination by Cutting off Researchers, Biotechniques Online News (2010)
3. American Type Culture Collection Standards Development Organization Workgroup ASN-0002. Cell Line Misidentification: The Beginning of the End. Nature Reviews 10:441-448 (2010).
4. Nardone, R.M. Eradication of Cross-contaminated Cell Lines: A Call for Action. Cell Biology and Toxicology 23:367-372 (2007).
5. Nardone, R.M. Curbing Rampant Cross-contamination and Misidentification of Cell Lines. BioTechniques 45:221-227 (2008).
6. Harald zur Hausen, Obligation for Cell Line Authentication: Appeal for Concerted Action. Int. J. Cancer: 1261 (2010)
7. Chatterjee, R., Newsfocus, Cases of Mistaken Identity. SCIENCE VOL 31516 (2007).
8. Capes-Davis, A., et al., Check Your Cultures! A List of Cross-contaminated or Misidentified Cell Lines. International Journal of Cancer. 127:1-8 (2010).
9. Phuchareon, J. et al., Genetic Profiling Reveals Cross-contamination and Misidentification of Six Adenoid Cystic Carcinoma Cell Lines: ACC2, ACC3, ACCM, ACCNS, ACCS, and CAC2. PLoS ONE 4:6 (2009).

Antibiotics

Antibiotics

The following table is designed as a guide for selecting appropriate antibiotics and their working concentrations. Care should be exercised when using two or more antibiotics
in the same culture system. Combined antibiotics frequently exert cytotoxic effects at lower concentrations than those indicated as appropriate for the individual antibiotics.

Refer to a comprehensive pharmacology guide for more information on antibiotic incompatibilities, as well as other properties of antibiotics not included in this table.

Antibiotics and Antimycotics

Product Name	Cat. No.	Gram (+) Bacteria	Gram (-) Bacteria	Mycobacteria	Yeasts	Molds	Mycoplasma	Working Concentration ($\mu \mathrm{g} / \mathrm{mL}$)	pcct/ mact
Amphotericin B	A2411				-	-		$2.5 \mathrm{mg} / \mathrm{L}$	mcct
Amphotericin B-Solubilized (Approx. 45\%)	A9528				-	-		$5.6 \mathrm{mg} / \mathrm{L}$ (of solid)	mcct
Amphotericin B($250 \mathrm{mg} / \mathrm{mL}$ solution)	A2942				-	-		$10 \mathrm{~mL} / \mathrm{L}$	mcct
Ampicillin	A0166	-	-					$100 \mathrm{mg} / \mathrm{L}$	mcct
Antibiotic Antimycotic Solution (100x) (10,000 units penicillin, 10 mg streptomycin, and $25 \mu \mathrm{~g}$ amphotericin B per mL) (Stabilized)	A5955	-	-		-	-		$10 \mathrm{~mL} / \mathrm{L}$	mcct
Cephalothin	C3050	-	-					$100 \mathrm{mg} / \mathrm{L}$	mcct
Chloramphenicol	C3175	-	-				*	10-35 (TS)	mcct
Dihydrostreptomycin	D5155	-	-					$100 \mathrm{mg} / \mathrm{L}$	mcct
Erythromycin	E5389	-	-					$100 \mathrm{mg} / \mathrm{L}$	mcct
Gentamicin Sulfate	G1264	-	-				-	$50 \mathrm{mg} / \mathrm{L}$	mcct
Gentamicin Sulfate ($10 \mathrm{mg} / \mathrm{mL}$ solution)	G1272	-	-				-	$5 \mathrm{~mL} / \mathrm{L}$	mcct
Gentamicin Sulfate ($50 \mathrm{mg} / \mathrm{mL}$ solution)	G1397	-	-				-	$1 \mathrm{~mL} / \mathrm{L}$	mcct
Gentamicin Sulfate ($50 \mathrm{mg} / \mathrm{mL}$ solution) (Hybri-Max)	G1522	-	-				-	$1 \mathrm{~mL} / \mathrm{L}$	mcct
Gentamicin-Glutamine Solution	G9654	-	-				-	$10 \mathrm{~mL} / \mathrm{L}$	mcct
L-Glutamine-Penicillin-Streptomycin Solution (200 mM L-Glutamine, 10,000 units Penicillin, and 10 mg Streptomycin per mL)	G1146	-	-					$10 \mathrm{~mL} / \mathrm{L}$	mcct
L-Glutamine-Penicillin-Streptomycin Solution (200 mM L-Glutamine, 10,000 units Penicillin, and 10 mg Streptomycin per mL) (Stabilized)	G6784	-	-					$10 \mathrm{~mL} / \mathrm{L}$	mcct
Kanamycin Monosulfate	K1377	-	-				-	$100 \mathrm{mg} / \mathrm{L}$	mcct
Kanamycin Sulfate ($10 \mathrm{mg} / \mathrm{mL}$ solution)	K0129	-	-				-	$10 \mathrm{~mL} / \mathrm{L}$	pcct mcct
Kanamycin Sulfate ($50 \mathrm{mg} / \mathrm{mL}$ solution)	K0254	-	-				-	$2 \mathrm{~mL} / \mathrm{L}$	pcct mcct
Lincomycin HCl	L2774	-						$100 \mathrm{mg} / \mathrm{L}$	mcct
- Effective against most species * Effective against certain species 'pcct $=$ plant cell culture tested; $\mathbf{m c c t}=$ mammalian cell culture tested									

Antibiotics and Antimycotics continued

Product Name	Cat. No.	Gram (+) Bacteria	Gram (-) Bacteria	Mycobacteria	Yeasts	Molds	Mycoplasma	Working Concentration ($\mathrm{\mu g} / \mathrm{mL}$)	pcct/ $\text { mact }^{1}$
Neomycin Sulfate	N6386	-	.					$50 \mathrm{mg} / \mathrm{L}$	mcct
Neomycin Sulfate ($10 \mathrm{mg} / \mathrm{mL}$ solution)	N1142	-	-					$5 \mathrm{~mL} / \mathrm{L}$	mcct
Nystatin (5000 units Nystatin per mg)	N6261				-	-		$\begin{aligned} & 2.5 \times 10^{5} \mathrm{U} / \mathrm{L} \\ & (50 \mathrm{mg} / \mathrm{L}) \end{aligned}$	mcct
Nystatin γ-Irradiated	N4014				-	-		$50 \mathrm{mg} / \mathrm{L}$	mcct
Nystatin Suspension (10,000 units Nystatin per mL)	N1638				-	-		$24 \mathrm{~mL} / \mathrm{L}$	mcct
Paromomycin Sulfate	P5057	-						$100 \mathrm{mg} / \mathrm{L}$	mcct
Penicillin-G (potassium salt)	P7794	-						100,000 U/L	mcct
Penicillin-G (sodium salt)	P3032	-						100,000 U/L	mcct
Penicillin-Streptomycin Solution (5000 units Penicillin-G and 5 mg Streptomycin per mL) (Stabilized)	P4458	-	-					$20 \mathrm{~m} / \mathrm{L}$	mcct
Penicillin-Streptomycin Solution (10,000 units Penicillin-G and 10 mg Streptomycin per mL)	P0781	-	-					$10 \mathrm{~mL} / \mathrm{L}$	mcct
Penicillin-Streptomycin Solution (10,000 units Penicillin-G and 10 mg Streptomycin per mL) (Hybri-Max)	P7539	-	-					$10 \mathrm{~mL} / \mathrm{L}$	mcct
Penicillin-Streptomycin Solution (10,000 units Penicillin-G and 10 mg Streptomycin per mL) (Stabilized)	P4333	-	-					$10 \mathrm{~mL} / \mathrm{L}$	mcct
Penicillin-Streptomycin-Neomycin Solution (5000 units Penicillin-G, 5 mg Streptomycin and 10 mg Neomycin per mL)	P4083	-	-					$10 \mathrm{~mL} / \mathrm{L}$	mcct
Phenoxymethylpenicillinic Acid (potassium salt) [Penicillin V]	P4807	-						100,000 U/L	mcct
Polymyxin B Sulfate	P4932		-					$50 \mathrm{mg} / \mathrm{L}$	mcct
Spectinomycin Dihydrochloride	S4014	-	-					$7.5-20 \mathrm{mg} / \mathrm{L}$	mect
Spectromycin Sulfate	S9137	-	-					$100 \mathrm{mg} / \mathrm{L}$	mcct
Tetracycline Hydrochloride	T7660	-	-					$10 \mathrm{mg} / \mathrm{L}$	mcct
Tylosin Tartrate (8 mg/mL soln.)	T3397	-					-	$1 \mathrm{~mL} / \mathrm{L}$	mect
Tylosin Tartrate	T6271	-					-	$8 \mathrm{mg} / \mathrm{L}$	moct
- Effective against most species * Effective against certain species pcct $=$ plant cell culture tested; $\mathbf{m c c t}=$ mammalian cell culture tested									

Antibiotic Selection Agents for Cell Culture

Product Name	Cat. No.	Mode of Action	Suggested Working Conc.
Actinomycin D	A9415	Complexes with DNA and interferes with RNA synthesis	$1 \mu \mathrm{~g} / \mathrm{mL}$
Bleomycin Sulfate	B8416	Complexes with DNA, causing strand scissions	$10-100 \mu \mathrm{~g} / \mathrm{mL}$
Chloramphenicol	C3175	Inhibits elongation at peptidyl transferase	$5 \mu \mathrm{~g} / \mathrm{mL}$
G 418	A1720	Blocks polypeptide synthesis and inhibits chain elongation	$100-800 \mu \mathrm{~g} / \mathrm{mL}$
G 418 (50 mg/mL solution)	G8168	Blocks polypeptide synthesis and inhibits chain elongation	$100-800 \mu \mathrm{~g} / \mathrm{mL}$
Hygromycin B	H3274	Blocks polypeptide synthesis and inhibits chain elongation	
Mitomycin C	M4287	Inhibits nucleic acid synthesis	$10-50 \mu \mathrm{~g} / \mathrm{mL}$
Mycophenolic Acid	M3536	Blocks inosine monophosphate dehydrogenase in guanosine monophosphate pathway	$25 \mu \mathrm{~g} / \mathrm{mL}$
Puromycin $\cdot \mathrm{HCl}$	P8833	Inhibits protein synthesis	$10-100 \mu \mathrm{~g} / \mathrm{mL}$

Powders

Kanamycin sulfate from Streptomyces kanamyceticus

Kanamycin A; Kanamycin sulfate salt [25389-94-0]
$\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{11} \cdot \mathrm{H}_{2} \mathrm{O}_{4} \mathrm{~S}$ FW 582.58

Mode of Action: Binds to 70S ribosomal subunit; inhibits translocation; elicits miscoding. Antimicrobial spectrum: Gram-negative and Gram-positive bacteria, and mycoplasma.

- meets USP testing specifications, powder

Used in biotechnology applications to inhibit protein synthesis. Used as a selection agent for cells transformed with kanamycin B (neoR, kanR) resistance gene.

K1637-1G	1 g
K1637-5G	5 g
K1637-25G	25 g

Gentamicin sulfate

Gentamicin sulfate salt [1405-41-0]

Mode of action: Gentamicin causes codon misreading by binding to the 305 ribosomal subunit, blocking the translocation of peptidyltRNA from the acceptor site to the donor site. ${ }^{12}$ The bactericidal effect of gentamicin on Pseudomonas aeruginosa is exerted by the binding of gentamicin to the outer membrane, where it displaces natural cations, destabilizes the membrane, and forms holes in the cell surface.3
Antimicrobial spectrum: Gram-negative bacteria, Staphylococcus aureus and other Gram-positive bacteria
Lit cited: 1. Korzybski, T., et al., Antibiotics: origin, nature, and properties, American Society for Microbiology
(Washington, DC: 1977), 712-723;
2. Lorian, V. (ed.), Antibiotics in Laboratory Medicine 2nd ed., Williams and Wilkins (Baltimore, MD: 1986), 694-696;
3. Kadurugamuwa, J., et al., Surface action of gentamicin on Pseudomonas aeruginosa J. Bacteriol. 175, 5798-5805 (1993);

- Garamycin; Gentiomycin C meets USP testing specifications, powder

Used as a selection agent (gentamicin-resistance gene) in molecular biology applications.

G1914-250MG	250 mg
G1914-5G	5 g
G1914-25G	25 g

Tetracycline hydrochloride

[64-75-5]
$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot \mathrm{HCl}$
FW 480.90

- powder

Recommended for use in molecular biology applications at $10-20 \mu \mathrm{~g} / \mathrm{ml}$.
Prepare stock solutions directly in the vial with sterile water ($10 \mathrm{mg} / \mathrm{ml}$). Stock solutions should be stored at $2-8^{\circ} \mathrm{C}$ for no longer than one week; tetracycline hydrolyzes in aqueous solution.

T8032-10MG	10 mg
T8032-20MG	20 mg

Polymyxin B sulfate

Polymyxin B sulfate salt [1405-20-5]
$\mathrm{C}_{55} \mathrm{H}_{96} \mathrm{~N}_{16} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ FW 1385.61

Antibiotic with bactericidal action on E. coli. ${ }^{12}$ Binds to the lipid A portion of bacterial lipopolysaccharides. ${ }^{3}$ Induces pore formation in the membranes of cortex cells from excised sorghum roots. ${ }^{4}$
Mode of Action: Binds to and interferes with the permeability of the cytoplasmic membrane.
Antimicrobial spectrum: Gram-negative bacteria.
Mixture of Polymyxin B_{1} and B_{2} sulfate.
Lit cited: 1. Cornu, J., Ann. Microbiol. 131B, 121 (1980);
2. Storm, D.R., et al., Annu. Rev. Biochem. 46, 723 (1977);
3. Morrison, D.C. and Jacobs, D.M., Immunochemistry 13, 813 (1976);
4. Lerner, H.R., et al., Physiol. Plant. 57, 90 (1983);

- meets USP testing specifications, powder

Used as immobilized (substrate bound) agent for removal of endotoxins.

P0972-1MU	1000000 units
P0972-10MU	10000000 units
P0972-50MU	50000000 units

Actinomycin D

Actinomycin IV;
Actinomycin C_{1};
Dactinomycin
[50-76-0]
$\mathrm{C}_{62} \mathrm{H}_{86} \mathrm{~N}_{12} \mathrm{O}_{16}$
FW 1255.42

from Streptomyces sp., suitable for cell culture, $\geq 95 \%$

Mode of Action: Complexes with DNA and interferes with RNA synthesis.
powder

A9415-2MG	2 mg
A9415-5MG	5 mg
A9415-10MG	10 mg
A9415-25MG	25 mg

Amphotericin B solubilized

Fungizone; Amphotericin B from Streptomyces sp. [1397-89-3] $\mathrm{C}_{47} \mathrm{H}_{73} \mathrm{NO}_{17}$ FW 924.08

Polyene antifungal antibiotic from Streptomyces. Affinity for sterols, primarily ergosterols, of fungal cell membranes. Forms channels in the membranes, causing small molecules to leak out. Antimicrobial spectrum: fungi and yeast.

- powder, BioXtra, suitable for cell culture

Mode of Action: Interferes with fungal membrane permeability by forming channels in the membranes and causing small molecules to leak out.
Recommended for use in cell culture applications at 5.6 mg (solid)/L. It is used to study the formation of ion-permeable channels in fungal cell membranes

Components

Amphotericin B ~45\%
Sodium deoxycholate ~35\%
Sodium phosphate balance

A9528-50MG	50 mg
A9528-100MG	100 mg
A9528-500MG	500 mg
A9528-1G	1 g
A9528-5G	5 g

Carbenicillin disodium salt

a-Carboxybenzylpenicillin disodium salt [4800-94-6]
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Na}_{2} \mathrm{O}_{6} \mathrm{~S}$
FW 422.36

Carboxypenicillin antibiotic that inhibits bacterial cell-wall synthesis (peptidoglycan cross-linking) by inactivating transpeptidases on the inner surface of the bacterial cell membrane. Analog to ampicillin.
Antimicrobial spectrum: Gram-positive and Gram-negative bacteria, Pseudomonas.

Stable at $37^{\circ} \mathrm{C}$ for 3 days

- BioReagent, plant cell culture tested

Recommended for antibacterial use in cell culture media at $100 \mu \mathrm{~g} / \mathrm{ml}$ and for selection of ampr transformed cells.

Hygroscopic powder

C3416-250MG	250 mg
C3416-1G	1 g
C3416-5G	5 g
C3416-10G	10 g

Ampicillin sodium salt

- powder, BioReagent, suitable for cell culture

Recommended for antibacterial use in cell culture media at $100 \mathrm{mg} / \mathrm{L}$.

Recommended for use in ampicillin-resistance studies at 20-125 $\mu \mathrm{g} / \mathrm{ml}$.
Stable at $37^{\circ} \mathrm{C}$ for 3 days.

A0166-5G	5 g
A0166-25G	25 g
A0166-100G	100 g

Chloramphenicol

D-(-)-threo-2-Dichloroacetamido-1-(4-nitrophenyl) -1,3-propanediol; Chloromycetin ${ }^{\text {TMM }}$; D-(-)-threo-2,2-Dichloro- N-[β-hydroxy-a-(hydroxymethyl)- β-(4-nitrophenyl)ethyl]acetamide; D-threo-2,2-Dichloro- N [β-hydroxy- α-(hydroxymethyl)-4-nitrophenethyl] acetamide [56-75-7] $\mathrm{Cl}_{2} \mathrm{CHCONHCH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}(\mathrm{OH})$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$ FW 323.13

Use as a seletion agent for transformed cells containing chloramphenicol resistance genes. Recommended for use in molecular biology applications at $10-20 \mu \mathrm{~g} / \mathrm{ml}$.

Prepare stock solutions directly in the vial at any concentration in the recommended range. Stock solutions should be stored at $2-8^{\circ} \mathrm{C}$. Stable at $37{ }^{\circ} \mathrm{C}$ for 5 days.
$\overline{\text { C7795-20MG }} 20 \mathrm{mg}$

- plant cell culture tested

Used as a seletion agent for transformed cells containing chloramphenicol resistance genes.

C1919-5G	5 g
C1919-25G	25 g
C1919-100G	100 g

Chloramphenicol-Water Soluble

- powder, BioReagent, suitable for cell culture

Mode of Action: Inhibits elongation of peptidyl transferase.
Formulated to contain approx. 100 mg chloramphenicol per gram of powder; balance 2-hydroxypropyl- β-cyclodextrin.
Recommended for use in cell culture applications at approximately $5 \mu \mathrm{~g} / \mathrm{ml}$ of active component (chloramphenicol).

Mode of Action: Inhibits elongation at transpeptidation step.
Antimicrobial spectrum: Gram-negative and Gram-positive bacteria.
Macrolide antibiotic.

- Erythrocin; E-Mycin

BioReagent, suitable for cell culture

Inhibits protein synthesis (elongation) at the level of transpeptidation (aminoacyl translocation A-site to P-site).
Recommended for use in cell culture applications at $100 \mathrm{mg} / \mathrm{L}$
powder

E5389-1G	1 g
E5389-5G	5 g

G 418 disulfate salt

Antibiotic G418
[108321-42-2]
$\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{10} \cdot 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ FW 692.71

Mode of Action: Blocks polypeptide synthesis by inhibiting protein elongation. For use in the selection and maintenance of eukaryotic cells stably transfected with neomycin resistance genes.
Aminoglycoside antibiotic similar in structure to gentamicin, neomycin and kanamycin.

- powder, BioReagent, suitable for cell culture

Mode of Action: Blocks polypeptide synthesis by inhibiting protein synthesis at the level of the 705 and 805 ribosomes. For use in the selection and maintenance of eukaryotic cells stably transfected with neomycin resistance genes.
Recommended for use as a selection agent at $100-800 \mu \mathrm{~g} / \mathrm{ml}$.
Recommended for use as a selection of G418 resistant transformed cells in molecular biology applications.

A1720-1G
A1720-5G
A1720-25G
Gentamicin sulfate salt
$1405-41-0$ g

Mode of action: Gentamicin causes codon misreading by binding to the 305 ribosomal subunit, blocking the translocation of peptidyltRNA from the acceptor site to the donor site. ${ }^{12}$ The bactericidal effect of gentamicin on Pseudomonas aeruginosa is exerted by the binding of gentamicin to the outer membrane, where it displaces natural cations, destabilizes the membrane, and forms holes in the cell surface. ${ }^{3}$

Antimicrobial spectrum: Gram-negative bacteria, Staphylococcus aureus and other Gram-positive bacteria
Lit cited: 1. Korzybski, T., et al., Antibiotics: origin, nature, and properties, American Society for Microbiology (Washington, DC: 1977), 712-723;
2. Lorian, V. (ed.), Antibiotics in Laboratory Medicine 2nd ed., Williams and Wilkins (Baltimore, MD: 1986), 694-696;
3. Kadurugamuwa, J., et al., Surface action of gentamicin on Pseudomonas aeruginosa J. Bacteriol. 175, 5798-5805 (1993);

- Garamycin; Gentiomycin C

 powder, BioReagent, suitable for cell cultureUsed as a selection agent (gentamicin-resistance gene) in cell culture and molecular biology applications. Recommended for use in cell culture applications at $50 \mathrm{mg} / \mathrm{L}$

G1264-50MG	50 mg
G1264-250MG	250 mg
G1264-1G	1 g
G1264-5G	5 g
G1264-100G	100 g

Hygromycin B from Streptomyces
 hygroscopicus

[31282-04-9]
$\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{13}$
FW 527.52

Mode of Action: Blocks polypeptide synthesis and inhibits elongation. For use in the selection and maintenance of prokaryotic and eukaryotic cells.
powder, BioReagent, suitable for cell culture, suitable for insect cell culture

Used as a selection agent for hygromycin resistance gene transformed cells. It is used at a recommended concentration of 100-800 $\mu \mathrm{g} / \mathrm{mL}$. $\geq 60 \%$ (HPAE)
Purified by ion exchange chromatography

H3274-50MG	50 mg
H3274-100MG	100 mg
H3274-5X100MG	$5 \times 100 \mathrm{mg}$
H3274-250MG	250 mg
H3274-1G	1 g

Kanamycin sulfate Streptomyces
 kanamyceticus

Kanamycin A;

 Kanamycin sulfate salt; Kanamycin sulfate from Streptomyces kanamyceticus[25389-94-0]

$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{11} \cdot \mathrm{H}_{2} \mathrm{O}_{4} \mathrm{~S}$
FW 582.58
Mode of Action: Binds to 705 ribosomal subunit; inhibits translocation; elicits miscoding. Antimicrobial spectrum: Gram-negative and Gram-positive bacteria, and mycoplasma.

- powder

Use in biotechnology applications to inhibit protein synthesis. Recommended for use in molecular biology applications at $10-50 \mu \mathrm{~g} / \mathrm{mL}$. Prepare stock solutions directly in the vial with sterile water ($10 \mathrm{mg} / \mathrm{mL}$). Stock solutions should be stored at $2-8^{\circ} \mathrm{C}$. Stable at $37^{\circ} \mathrm{C}$ for 5 days.
K0879-50MG 50 mg

Kanamycin sulfate from
 Streptomyceskanamyceticus

Mode of Action: Binds to 70S ribosomal subunit; inhibits translocation; elicits miscoding. Antimicrobial spectrum: Gram-negative and Gram-positive bacteria, and mycoplasma.
powder, BioReagent, suitable for cell culture
Use in biotechnology applications to inhibit protein synthesis. Recommended for use in cell culture applications at $100 \mathrm{mg} / \mathrm{L}$.

K1377-1G	1 g
K1377-5G	5 g
K1377-25G	25 g

- BioReagent, plant cell culture tested

Used in biotechnology applications to inhibit protein synthesis. Used as a selection agent for cells transformed with kanamycin B (neoR, kanR) resistance gene.

K4378-5G	5 g
K4378-25G	25 g

Mitomycin C from Streptomyces caespitosus

[50-07-7] $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5}$

Inhibitor of DNA synthesis, nuclear division, and cancer cells. Antibacterial to gram positive, gram negative, acid-fast bacilli.

- powder, BioReagent, suitable for cell culture

Vial contains 2 mg mitomycin C and 48 mg NaCl .
Mitomycin C is used to generate mitotically inactive feeder cells used in cell culture systems, such as mitotically inactive fibroblast used in embryonic stem cell (ESC) systems.

Mitomycin C is an anti-neoplastic antibiotic, DNA inter-strand, cross-linking, alkylating agent that targets guanine nucleoside in the sequence 5'CpG-3'. It produces oxygen radicals and is preferentially toxic to hypoxic cells.

M4287-2MG	2 mg
M4287-5X2MG	$5 \times 2 \mathrm{mg}$

Mycophenolic acid

6-(4-Hydroxy-6-methoxy-7-methyl-3-oxo-5-phthal-anyl)-4-methyl-4-hexenoic acid; 6-(1,3-Dihydro-7-hydroxy-5-methoxy-4-methyl-1-oxoisobenzofuran-6-yl)-4-methyl-4-hexanoic acid [24280-93-1] $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6}$ FW 320.34

Immunosuppressive agent. Suppresses cytokineinduced nitric oxide production.
Mode of Action: Blocks inosine monophosphate dehydrogenase in the guanosine monophosphate pathway.
Used to select animal cells expressing the Escherichia coli gene for xanthine-guanine phosphosribosyl transferase.

- powder, BioReagent, suitable for cell culture, $\geq 98 \%$

Immunosuppressive agent. Used to inhibit early stage biosynthesis of purine nucleotides. Used as a specific inhibitor of inosine 5'-monophosphate (IMP) dehydrogenase (IMPDH) and inducer of IMP dehydrogenase gene expression.
Recommended for use as a selection agent at $25 \mu \mathrm{~g} / \mathrm{ml}$.

M3536-50MG	50 mg
M3536-250MG	250 mg

Neomycin trisulfate salt hydrate

[1405-10-3]
$\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{13}$.
$3 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}$
FW 908.88 (Anh)

Mode of action: binds to the 30S and in some cases the 505 subunit causing miscoding; inhibits initiation and elongation during protein synthesis.
Antimicrobial spectrum: Gram-negative and Gram-positive bacteria.

- powder, BioReagent, suitable for cell culture

Broadly used in molecular biology and cell culture as a selection agent for prokaryotic cells that have been transformed using the selectable marker gene (neo). Recommended for use in cell culture applications at $50 \mathrm{mg} / \mathrm{L}$.

N6386-5G	5 g
$N 6386-25 \mathrm{G}$	25 g
N6386-100G	100 g

Nystatin

Fungicidin; Mycostatin [1400-61-9]

Mode of Action: Increases the permeability of the cell membrane of sensitive fungi by binding to sterols.

Antimicrobial spectrum: Yeasts and molds.

- powder, BioReagent, suitable for cell culture

Mode of Action: Used as a fungal membrane (ergosterol binding) pore forming agent and to create nystatin/ergosterol based ion channels in lipid bilayers. Used as a lipid raft-inhibiting reagent and membrane associated cholesterol.
Nystatin is effective as a suspension. Prepare 50 $\mathrm{mg} / \mathrm{ml}$ stock suspensions in water and store at $-20^{\circ} \mathrm{C}$. Stable at $37^{\circ} \mathrm{C}$ for 3 days. Use in tissue culture at $50 \mu \mathrm{~g} / \mathrm{ml}$.
Note: Non-sterile powder. Not recommended for aseptic work. See N1638, Nystatin Suspension, Cell Culture Tested.

N6261-500KU	500000 units
N6261-5MU	5000000 units
N6261-25MU	25000000 units

Penicillin G

Penicillin G potassium salt

Benzylpenicillin
potassium salt
[113-98-4]
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{KN}_{2} \mathrm{O}_{4} \mathrm{~S}$
 FW 372.48

Mode of Action: Inhibits bacterial cell wall synthesis.
Antimicrobial spectrum: Gram-positive bacteria

- powder, BioReagent, suitable for cell culture

Mode of Action: Use to inhibit the synthesis of bacterial cell walls by inhibition of the cell wall peptidoglycan chain cross-lining. Antimicrobial spectrum: Gram-positive bacteria

Recommended for use in cell culture applications at 100,000 units/L. Solutions should be filter sterilized and stored at $2-8^{\circ} \mathrm{C}$ for up to 1 week, $-20^{\circ} \mathrm{C}$ for extended periods. Solutions are stable at $37^{\circ} \mathrm{C}$ for 3 days.

P7794-1MU	1000000 units
P7794-10MU	10000000 units
P7794-100MU	100000000 units

Penicillin G sodium salt
 Benzylpenicillin sodium
 salt[69-57-8]
 $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}$
 FW 356.37

Mode of Action: Inhibits bacterial cell wall synthesis.

Antimicrobial spectrum: Gram-positive bacteria.

- powder, BioReagent, suitable for cell culture

Recommended for use in cell culture media at 100,000 units/L. Solutions should be filter sterilized and stored at $2-8^{\circ} \mathrm{C}$ for up to 1 week, $-20^{\circ} \mathrm{C}$ for extended periods. Solutions are stable at $37^{\circ} \mathrm{C}$ for 3 days.

P3032-1MU	1000000 units
P3032-10MU	10000000 units
P3032-25MU	25000000 units
P3032-100MU	100000000 units
	Penicillin G
Polymyxin B sulfate salt	
$\begin{aligned} & {[1405-20-5]} \\ & \mathrm{C}_{55} \mathrm{H}_{96} \mathrm{~N}_{16} \mathrm{O}_{13} . \\ & 2 \mathrm{H}_{2} \mathrm{SO}_{4} \\ & \mathrm{FW} 1385.61 \end{aligned}$	

Antibiotic with bactericidal action on E. coli. ${ }^{12}$ Binds to the lipid A portion of bacterial lipopolysaccharides. ${ }^{3}$ Induces pore formation in the membranes of cortex cells from excised sorghum roots. ${ }^{4}$
Mode of Action: Binds to and interferes with the permeability of the cytoplasmic membrane.

Antimicrobial spectrum: Gram-negative bacteria.
Mixture of Polymyxin B_{1} and B_{2} sulfate.
Lit cited: 1. Cornu, J., Ann. Microbiol. 131B, 121 (1980);
2. Storm, D.R., et al., Annu. Rev. Biochem. 46, 723 (1977);
3. Morrison, D.C. and Jacobs, D.M., Immunochemistry 13, 813 (1976);
4. Lerner, H.R., et al., Physiol. Plant. 57, 90 (1983);

- powder, BioReagent, suitable for cell culture

Recommended for use in cell culture applications at $50 \mathrm{mg} / \mathrm{L}$. Used as a lipid A binding agent that induces pore formation in cell membranes and as immobilized (substrate bound) agent for removal of endotoxins.

Stock solutions should be sterile filtered and stored at $2-8^{\circ} \mathrm{C}$. Stable at $37^{\circ} \mathrm{C}$ for 5 days.

P4932-1MU	1000000 units
P4932-5MU	5000000 units

Puromycin dihydrochloride from Streptomyces alboniger
 3'-[a-Amino-p-methoxyhydrocinnamamido]-3'-deoxy-N,N-dimethyladenosine dihydrochloride [58-58-2]
 $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{7} \mathrm{O}_{5} \cdot 2 \mathrm{HCl} \quad$ FW 544.43

Nucleoside antibiotic; protein synthesis inhibitor; prevents growth of bacteria, protozoa, algae, and mammalian cells.

- powder, BioReagent, suitable for cell culture

Used as a selective agent for cells that contain the resistance gene puromycin N -acetyl-transferase (PAC). Recommended for use at a range of 1-10 $\mu \mathrm{g} / \mathrm{ml}$. Sterilize stock solution by filtration using $0.22 \mu \mathrm{~m}$ filter then store in aliquots at $-20^{\circ} \mathrm{C}$.
Sterilize stock solution by filtration using $0.22 \mu \mathrm{~m}$ filter then store in aliquots at $-20^{\circ} \mathrm{C}$.
$\geq 98 \%$ (HPLC)

P8833-10MG	10 mg
P8833-25MG	25 mg
P8833-100MG	100 mg

Spectinomycin dihydrochloride pentahydrate

[22189-32-8]
$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7} \cdot 2 \mathrm{HCl}$.
$5 \mathrm{H}_{2} \mathrm{O}$ FW 495.35

Mode of Action: Inhibits protein synthesis
(elongation) by interfering with peptidyl tRNA translocation.
Antimicrobial spectrum: Gram-negative and Gram-positive bacteria (Gonnococcus only).
Mode of Resistance: Mutation in rpsE (the gene for ribosomal protein S5) prevents binding of spectinomycin.

- powder, BioReagent, suitable for cell culture

Recommended for use in cell culture applications at $7.5-20 \mathrm{mg} / \mathrm{L}$ and as a selection agent for transformed plant cells that contain the selectable marker gene Spcr.

Prepare stock solutions should be prepared (water $10 \mathrm{mg} / \mathrm{ml}$) and filter sterilized. Stock solutions can be stored at $2-8^{\circ} \mathrm{C}$ for several weeks or at $-20^{\circ} \mathrm{C}$ for extended periods.

S4014-5G	5 g
$S 4014-25 \mathrm{G}$	25 g

Streptomycin sulfate salt

[3810-74-0]
$\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{12}$
$1.5 \mathrm{H}_{2} \mathrm{SO}_{4}$
FW 728.69

Mode of Action: Inhibits prokaryote protein synthesis. Binds to $\$ 12$ protein of $30 S$ ribosomal subunit, preventing the transition from initiation complex to chain-elongating ribosome, causing miscoding or inhibiting initiation.

Mode of Resistance: Mutation in rpsL (gene for S12 ribosomal protein) prevents binding of streptomycin to ribosome. Aminoglycoside phosphotransferase also inactivates.
Antimicrobial spectrum: Gram-negative and Gram-positive bacteria.

- powder, BioReagent, suitable for cell culture

Recommended for use in cell culture applications at $100 \mathrm{mg} / \mathrm{L}$. Stock solutions should be sterilefiltered and stored at $2-8{ }^{\circ} \mathrm{C}$ for up to a month or at $-20^{\circ} \mathrm{C}$ for extended periods. Solutions are stable at $37^{\circ} \mathrm{C}$ for 3 days.

S9137-25G	25 g
S9137-100G	100 g

- plant cell culture tested

Used together with penicillin and other agents to inhibit bacterial contamination in cell culture applications.

S0774-25G	25 g
SO774-100G	100 g

- Biotechnology Performance Certified, cell culture tested

Solutions

Gentamicin solution

[1405-41-0]

Mode of Action: Inhibits protein synthesis by binding to L6 protein of 50S ribosomal subunit.

Antimicrobial spectrum: Gram-negative and Gram-positive bacteria, and mycoplasma.

- Garamycin; Gentiomycin C Hybri-Max™, BioReagent, suitable for hybridoma
liquid
G1522-10ML 10 mL

Tetracycline hydrochloride

[64-75-5] $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8}$ HCl FW 480.90°

- powder, BioReagent, suitable for cell culture

Used in tetracycline controlled gene expression systems (gene switches) such a the tet-on and tet-off systems. Recommended for use in cell culture applications at $10 \mathrm{mg} / \mathrm{L}$.

L-Glutamine-Penicillin-

Streptomycin solution

Mode of Action: Glutamine is essential as an energy source for most mammalian cells in culture because of its amino acid carbon skeleton. Penicillin acts by inhibiting bacterial cell wall synthesis. Streptomycin inhibits prokaryote protein synthesis by preventing the transition from initiation complex to chain-elongating ribosome and causes miscoding.
Antimicrobial spectrum: Gram-negative and Gram-positive bacteria.

- with 200 mM L-glutamine, 10,000 U penicillin and 10 mg steptomycin $/ \mathrm{mL}$ in $0.9 \% \mathrm{NaCl}$, BioReagent, suitable for cell culture

Used to reduce or eliminate bacterial contamination in cell, especially primary cell, cultures.
Recommended for use in cell culture applications at $10 \mathrm{ml} / \mathrm{L}$.
liquid

Formulated with 200 mM L-glutamine, 10,000 units $/ \mathrm{ml}$ penicillin, and $10 \mathrm{mg} / \mathrm{ml}$ streptomycin in 0.9% sodium chloride.

G1146-10X5ML	$10 \times 5 \mathrm{~mL}$
G1146-100ML	100 mL

- streptomycin: $10 \mathrm{mg} / \mathrm{mL}$, L-glutamine: 200 mM , penicillin: 10,000 units, BioReagent, suitable for cell culture
Solubilized in a proprietary buffer.
Use to reduce or eliminate bacterial contamination in cell, especially primary cell, cultures. Recommended for use at $10 \mathrm{ml} / \mathrm{L}$.
stabilized

G6784-10X5ML	$10 \times 5 \mathrm{~mL}$
G6784-100ML	100 mL

Amphotericin B solution

[1397-89-3] $\mathrm{C}_{47} \mathrm{H}_{73} \mathrm{NO}_{17}$ FW 924.08

- BioReagent, suitable for cell culture

Mode of action: Interferes with fungal membrane permeability by forming channels in the membranes and causing small molecules to leak out.
Antimicrobial spectrum: Yeasts and molds.
Recommended for use in cell culture applications at $10 \mathrm{ml} / \mathrm{L}$.
Prepared from A 9528.
Stable at $37^{\circ} \mathrm{C}$ for 3 days.

A2942-20ML	20 mL
A2942-50ML	50 mL
A2942-100ML	100 mL

Antibiotic Antimycotic Solution (100x), Stabilized
 - with 10,000 units penicillin, 10 mg streptomycin and $25 \mu \mathrm{~g}$ amphotericin B per mL, BioReagent, suitable for cell culture

Mode of Action: Penicillin acts by inhibiting bacterial cell-wall synthesis. Streptomycin inhibits prokaryote protein synthesis by preventing the transition from initiation complex to chain-elongating ribosome and causes miscoding. Amphotericin B interferes with fungal membrane permeability by forming channels in the membranes and causing small molecules to leak out.

Antimicrobial spectrum: Gram-negative bacteria, Gram-positive bacteria, fungi and yeasts.
Solubilized in a proprietary citrate buffer. Formulated to contain 10,000 units/ml penicillin G, $10 \mathrm{mg} / \mathrm{ml}$ streptomycin sulfate and $25 \mu \mathrm{~g} / \mathrm{ml}$ amphotericin B.
Recommended for use in cell culture applications at $10 \mathrm{ml} / \mathrm{L}$.
suspension

A5955-20ML	20 mL
A5955-100ML	100 mL

G 418 disulfate salt solution

Mode of Action: Blocks polypeptide synthesis and inhibits elongation in the selection and maintenance of eucaryotic cells stably transfected with neomycin resistance gene

- BioReagent, suitable for cell culture

Used for selection of G418 resistant transformed cells in molecular biology applications at a recommended concentration of $100-800 \mu \mathrm{~g} / \mathrm{ml}$.
$50 \mathrm{mg} / \mathrm{mL}$ in tissue culture grade water

G8168-10ML	10 mL
G8168-100ML	100 mL

Gentamicin solution

[1405-41-0]

Mode of Action: Inhibits protein synthesis by binding to 26 protein of 505 ribosomal subunit.
Antimicrobial spectrum: Gram-negative and Gram-positive bacteria, and mycoplasma.

- liquid, BioReagent, suitable for cell culture

Formulated to contain $50 \mathrm{mg} / \mathrm{ml}$ gentamicin in deionized water.

Used as a selection agent (gentamicin-resistance gene) in molecular biology and cell culture applications. Recommended for use in cell culture applications at $1 \mathrm{ml} / \mathrm{L}$.

Stable at $37^{\circ} \mathrm{C}$ for 5 days.

G1397-10ML	10 mL
G1397-100ML	100 mL

- Garamycin; Gentiomycin C liquid, BioReagent, suitable for cell culture

Formulated to contain $10 \mathrm{mg} / \mathrm{ml}$ gentamicin in deionized water.
Recommended for use in cell culture applications at $5 \mathrm{ml} / \mathrm{L}$ and used as a selection agent (gentamicin-resistance gene) in molecular biology applications.
Stable at $37^{\circ} \mathrm{C}$ for 5 days.

G1272-10ML	10 mL
G1272-100ML	100 mL

- Garamycin; Gentiomycin C for cell biology in accordance for cell culture
sterile filtered

48755

Gentamicin-Glutamine solution

- with 200 mM L-glutamine and 5 mg gentamicin per mL in tissue culture grade water, liquid, BioReagent, suitable for cell culture
Mode of Action: Glutamine is essential as an energy source for most mammalian cells in culture because of its amino acid carbon skeletons. Inhibits protein synthesis by binding to L6 protein of 50 S ribosomal subunit.

Antimicrobial spectrum: Gram-negative and Gram-positive bacteria, and mycoplasma.

Used for selection of transformed cells that contain the aacA.aphD gene. Recommended for use in cell culture applications at $10 \mathrm{ml} / \mathrm{L}$.
Formulated to contain 200 mM L-glutamine and 5 $\mathrm{mg} / \mathrm{ml}$ gentamicin in 0.9% sodium chloride.
Stable at $37^{\circ} \mathrm{C}$ for 5 days.
G9654-10X5ML $\quad 10 \times 5 \mathrm{~mL}$

Kanamycin solution from Streptomyces kanamyceticus
[25389-94-0]

Mode of Action: Binds to 70S ribosomal subunit; inhibits translocation; elicits miscoding.
Antimicrobial spectrum: Gram-negative and Gram-positive bacteria, and mycoplasma.

- BioReagent, liquid, suitable for cell culture

Used as a selection agent for cells transformed with kanamycin B (neoR, kanR) resistance gene. Recommended for use in cell culture applications at $2 \mathrm{ml} / \mathrm{L}$.

Stable at $37^{\circ} \mathrm{C}$ for 5 days.
K0254-20ML
20 mL

- BioReagent, suitable for cell culture

Recommended for use in cell culture applications at $10 \mathrm{ml} / \mathrm{L}$.

Stable at $37^{\circ} \mathrm{C}$ for 5 days.
K0129-20ML 20 mL

Neomycin solution

[119-04-0]
$\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{13}$ FW 614.64

with $10 \mathrm{mg} / \mathrm{mL}$ neomycin in $0.9 \% \mathrm{NaCl}$,
BioReagent, suitable for cell culture
Mode of action: binds to the 30 S and in some cases the 50S subunit causing miscoding; inhibits initiation and elongation during protein synthesis. Antimicrobial spectrum: Gram-negative and Gram-positive bacteria.
Formulated to contain $10 \mathrm{mg} / \mathrm{ml}$ neomycin in 0.9% sodium chloride.

Broadly used in molecular biology and cell culture as a selection agent for prokaryotic cells that have been transformed using the selectable marker gene (neo). Recommended for use in cell culture applications at $5 \mathrm{ml} / \mathrm{L}$.
liquid
Stable at $37^{\circ} \mathrm{C}$ for 5 days.
N1142-20ML 20 mL

Nystatin Suspension

[1400-61-9]

- suspension, BioReagent, suitable for cell culture

Mode of Action: Increases the permeability of the cell membrane of sensitive fungi by binding to sterols.

Antimicrobial spectrum: Yeasts and molds.
Recommended for use in cell culture applications at $24 \mathrm{ml} / \mathrm{L}$. Used as a fungal membrane (ergosterol binding) pore forming agent and to create nystatin/ergosterol based ion channels in lipid bilayers and as a lipid raft-inhibiting reagent and membrane associated cholesterol aggregator.
Stable at $37^{\circ} \mathrm{C}$ for 3 days.

N1638-20ML	20 mL
N1638-100ML	100 mL

Penicillin - Streptomycin - Neomycin
Solution Stabilized

- Pen-Strep-Neo formulated to contain $\sim 5,000$ units penicillin, 5 mg streptomycin and 10 mg neomycin $/ \mathrm{mL}$, BioReagent, suitable for cell culture
Recommended for use in cell culture applications at $10 \mathrm{ml} / \mathrm{L}$.
liquid

P4083-20ML	20 mL
P4083-100ML	100 mL

Penicillin-Streptomycin Solution

 Hybri-Max ${ }^{\text {TM }}$- Pen-Strep with 10,000 units penicillin and $10 \mathrm{mg} /$ ml streptomycin in $0.9 \% \mathrm{NaCl}$, BioReagent, suitable for hybridoma
liquid

P7539-20ML	20 mL
P7539-100ML	100 mL

Penicillin-Streptomycin

Pen-Strep

liquid

- Solution Stabilized, with 5,000 units penicillin and 5 mg streptomycin $/ \mathrm{mL}$, BioReagent, suitable for cell culture
Solubilized in a proprietary citrate buffer.
Recommended for use in cell culture media at $20 \mathrm{ml} / \mathrm{L}$.

P4458-20ML	20 mL
P4458-100ML	100 mL

- with 10,000 units penicillin and 10 mg streptomycin per mL in $0.9 \% \mathrm{NaCl}$, BioReagent, suitable for cell culture
Recommended for use in cell culture applications at $10 \mathrm{ml} / \mathrm{L}$.

P0781-20ML	20 mL
P0781-100ML	100 mL

- Solution stabilized, with 10,000 units penicillin and 10 mg streptomycin $/ \mathrm{mL}$, BioReagent, suitable for cell culture

Solubilized in a proprietary citrate buffer.
Recommended for use in cell culture applications at $10 \mathrm{ml} / \mathrm{L}$.

P4333-20ML	20 mL
P4333-100ML	100 mL

Tylosin solution
[74610-55-2]

- BioReagent, suitable for cell culture

Inhibits bacterial protein synthesis at the level of 505 ribosome (L27 protein) binding. Antimicrobial spectrum: Gram-positive bacteria and mycoplasma.
Formulated to contain $8 \mathrm{mg} / \mathrm{ml}$ tylosin in 0.9% sodium chloride.

Recommended for use in cell culture applications at $1 \mathrm{ml} / \mathrm{L}$.

T3397-20ML

Sigma ${ }^{\circ}$ Life Science has been a trusted source of reliable, high-quality media, sera and reagents for over 25 years.

Cultivating healthy cell growth means depending on a quality mix of media, sera and reagents. That's why we offer an unparalleled line of cell culture solutions. From classical and specialty media, to fetal bovine serum, supplements and reagents, our offering is extensive and comprehensive.

For more information visit
sigma.com/cellculture

[^0] and its affiliate Sigma-Aldrich Biotechnology, L.P.

Mycoplasma Detection/Elimination

The maintenance of contamination-free cell lines is essential to cell-based research. Among the biggest concerns are mycoplasma contamination. Although mycoplasma do not usually kill contaminated cells, they are difficult to detect and can cause a variety of effects on cultured cells, including altered metabolism, slowed proliferation and chromosomal aberrations. In short, mycoplasma contamination compromises the value of those cell lines in providing accurate data for life science research.

The sources of mycoplasma contamination in the laboratory are very challenging to completely control. As certain mycoplasma species are found on human skin, they can be introduced through poor aseptic technique. Additionally, they can come from contaminated supplements such as fetal bovine serum, and most importantly from other contaminated cell cultures. Once mycoplasma contaminates a culture, it can quickly spread to contaminate other areas of the lab. Strict adherence to good laboratory practices such as good aseptic technique are key, and routine testing for mycoplasma is highly recommended for successful control of mycoplasma contamination. The products below represent a complete toolkit for myplasma contamination detection and elimination. The three most popular methods for detection include mycoplasma culture, DNA staining method and PCR.

Mycoplasma Culture

Mycoplasma Agar

powder, suitable for microbiology
Recommended for the cultivation of mycoplasma
Powder contains (g/L): 10.0 bacterial peptone, 10.0 LAB-LEMCO powder, 5.0 sodium chloride, 0.5 mineral supplement, 10.0 agar.
M0660-500G 500 g

4,6-Diamidino-2-phenylindole

 dihydrochloride$$
\begin{aligned}
& \text { 2-(4-Amidinophenyl)- } \\
& \text { 6-indolecarbami- } \\
& \text { dine dihydrochloride; } \\
& \text { DAPI dihydrochloride } \\
& {[28718-90-3] \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5}} \\
& 2 \mathrm{HCl} \text { FW } 350.25
\end{aligned}
$$

Cell permeable fluorescent minor groove-binding probe for DNA. Binds to the minor groove of double-stranded DNA (preferentially to AT rich DNA), forming a stable complex which fluoresces approximately 20 times greater than DAPI alone.
DAPI is several times more sensitive than ethidium bromide for staining DNA in agarose gels.

- powder, BioReagent, suitable for cell culture, $\geq 98 \%$ (HPLC and TLC)
Protect from light.

D8417-1MG	1 mg
D8417-5MG	5 mg
D8417-10MG	10 mg

Hoechst Stain solution

Bisbenzimide H 33258 [23491-45-4]

A fluorescent DNA stain qualified for use in Mycoplama staining.
Contains $0.5 \mu \mathrm{~g} / \mathrm{ml}$ Hoechst bisbenzimide 33258 fluorochrome stain and thimerosal.

H6024-10ML

 10 mL
LookOut ${ }^{\ominus}$ DNA Erase

LookOut ${ }^{\oplus}$ DNA Erase may be applied to steel, glass, ceramic, plastic, rubber, or precious metals including laboratory equipment and pipettors. It should not be applied on light and non-ferrous metals. For other sensitive surfaces, test in a small area before applying.
LookOut ${ }^{\circledR}$ DNA Erase is a potent, ready-to-use solution for rapid DNA decontamination of surfaces in laboratories. This reagent is characterized by its high efficiency. The decontamination spray completely destroys DNA within 60 seconds of surface treatment. The solution contains a unique combination of DNA destroying and surface active agents.
Both the 250 ml spray reagent (Product Number L8917) and the 1 L refill (Product Number L9042) are supplied ready-to-use.

- Spray reagent for DNA decontamination of equipment and surfaces.

L8917-250ML	250 mL
Refill	
L9042-1L	1 L

LookOut ${ }^{\oplus}$ Mycoplasma Elimination Kit

The kit is comprised of a combination of biological agents that reliably and completely eliminate mycoplasma contamination. The initial treatment of this eradication procedure is adequate for mycoplasma elimination in most applications. The second step suppresses and inactivates any remaining mycoplasma using a follow-up antibiotic treatment.
The LookOut ${ }^{\circledR}$ Mycoplasma Elimination Kit has been developed to quickly and efficiently eliminate mycoplasma contamination from cell cultures.
1 kit sufficient for 5 mL , mycoplasma elimination

Components

Initial treatment
Final treatment
MP0030-1KT

LookOut ${ }^{\circledR}$ Mycoplasma PCR Detection Kit

The reaction tubes included with the kit are pre-coated with appropriate dNTPs, primers, and loading dye. Total assay time is greatly reduced compared to general protocols that require individual loading of reaction tubes.
The LookOut ${ }^{\oplus}$ Mycoplasma PCR Detection Kit utilizes the polymerase chain reaction (PCR), which is established as the method of choice for highest sensitivity in the detection of Mycoplasma, Acholeplasma, and Ureaplasma contamination in cell cultures and other cell culture derived biologicals. Detection requires less than 2 mycoplasma genomes per microliter of sample.

Components

Pre-coated test reaction tubes
Pre-coated positive control reaction tubes
Rehydratin Buffer
Cap for reaction tubes
MP0035-1KT 1 kit

Mycoplasma Agar

- powder, suitable for microbiology

Recommended for the cultivation of mycoplasma
Powder contains (g / L): 10.0 bacterial peptone,
10.0 LAB-LEMCO powder, 5.0 sodium chloride, 0.5 mineral supplement, 10.0 agar.
M0660-500G 500 g

Mycoplasma Broth

- powder, suitable for microbiology

Recommended for the cultivation of mycoplasma
Powder contains (g / L): 10.0 bacterial peptone, 10.0 LAB-LEMCO powder, 5.0 sodium chloride, 0.5 mineral supplement.

M0535-250G	250 g
M0535-500G	500 g

Mycoplasma Control Slides

Cells are grown on coverslips which have been mounted on microscope slides. Use caution when handling control slides as cells are exposed to facilitate staining.
For use in Mycoplasma stain kit.

Components

negative control slides 10
positive control slides 10
M1414-1SET 1 set

Mycoplasma Stain Kit

Recommended for the detection of mycoplasma in cell culture.
1 kit sufficient for 100 tests

Components

Hanks' Balanced Salt Solution without phenol red and sodium bicarbonate $3 \times 35 \mathrm{~mL}$
Hoechst Stain Solution 10 mL
Mounting Medium 10 mL
negative control slides 10
positive control slides 10

MYC1-1KT	1 kit

Venor ${ }^{\text {TM }} \mathrm{GeM}$ Mycoplasma Detection Kit, PCR-based

Kit employs PCR technology for rapid and reliable detection of mycoplasma DNA in cell cultures and virus stocks.
1 kit sufficient for 25 tests
Does not include Taq Polymerase. Optimized for use with D9307, Taq DNA Polymerase

Components

Positive Control 1 vial
Negative Control 1 vial
PCR 10X Reaction Buffer 1 vial
Primer/Nucleotide Mix 1 vial

MP0025-1KT
1 kit

bisBenzimide H 33258

HOE 33258; 2-[2-(4-Hydroxyphenyl)-6-benz-imidazoyl]-6-(1-methyl-4-piperazyl)benzimidazole trihydrochloride; 2'-(4-Hydroxyphenyl)-5-(4-methyl-1-piperazinyl)-2,5'-bi(1H-benzimidazole) trihydrochloride; BBIH; Hoechst 33258
[23491-45-4] $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O} \cdot 3 \mathrm{HCl}$ FW 533.88

Membrane-permeable, fluorescent DNA stain with low cytotoxicity that intercalate in A-T regions of DNA.
Useful for staining DNA, chromosomes, and nuclei. May be used for fluorescence microscopy or flow cytometry.

- powder, BioReagent, suitable for cell culture, $\geq 98 \%$ (HPLC and TLC)
passes application test for fluorescence

B1155-25MG	25 mg
B1155-100MG	100 mg

Mycoplasma agar base

- for microbiology

Used for isolation and cultivation of mycoplasma.
Ingredients (g/L)
Beef heart, infusion, 250.00
Peptic digest of animal tissue, 10.00
Sodium chloride, 5.00
Agar, 15.00
M2178-500G 500 g

Mycoplasma enrichment supplement

- for microbiology

A selective supplement for the isolation of Mycoplasma.
Composition: (per vial)
Horse serum: 20.00 ml
Yeast extract ($25 \% \mathrm{w} / \mathrm{v}$ solution): 10.00 ml
Thallous acetate: 25.00 mg
Penicillin G: 20,000 IU
Sufficient for 100 ml medium
M6930-1VL 1 vial

Frey mycoplasma broth base

- for microbiology

Used for cultivation of Avian Mycoplasma.
Ingredients (g / L)
Casein enzymic hydrolysate, 7.50
Papaic digest of soyabean meal, 2.50
Yeast extract, 5.00
Sodium chloride, 5.00
Potassium chloride, 0.40
Magnesium sulphate, 0.20
Disodium phosphate, 1.60
Monopotassium phosphate, 0.10
F6797-500G 500 g

Endotoxin Testing

E-TOXATE ${ }^{\text {Tm }}$ Kit

- sufficient for 20 assays

Components

E-Toxate ${ }^{T M}$ Endotoxin standard (Sigma E8029) 1 vial
E-Toxate ${ }^{\text {TM }}$ reagent (Sigma E8779) 1 vial
E-Toxate ${ }^{\text {TM }}$ Water (Sigma 2107) 30 ml
ET0200-1KT
1 kit

E-Toxate ${ }^{\text {TM }}$ Kit
sufficient for 50 assays

Components

E-Toxate ${ }^{\text {TM }}$ Endotoxin standard (Sigma E8029) 1 vial
E-Toxate ${ }^{\text {TM }}$ Reagent (Sigma 21050) 1 vial
E-Toxate ${ }^{\text {TM }}$ Water (Sigma 2107) 30 ml
ET0100-1KT

E-TOXATE ${ }^{\text {TM }}$ Kit

- sufficient for 100 assays

Components

E-Toxate ${ }^{\text {TM }}$ Endotoxin standard (Sigma E8029) 1 vial
E-Toxate ${ }^{\text {TM }}$ Reagent (Sigma 21020) 5 vials
E-Toxate ${ }^{\text {TM }}$ Water (Sigma 2107) $5 \times 30 \mathrm{ml}$

ET0300-1KT

E-Toxa-Clean ${ }^{\circledR}$ Concentrate
Alkaline detergent for pre-cleaning glassware prior to inactivation of endotoxin by steam sterilization or baking.
Use at 1% in hot tap water.
E9029-500G

Lectin from Limulus polyphemus

- lyophilized powder

composition

Protein ~50\% (Bradford)
L7908

Biobeyond.

Cell lines to shape cancer research.
Now, understand the role of specific disease-associated genes in colorectal and breast cancer. Introducing genetically modified human cell lines that model disease-specific patient populations.
sigma.com/biocells

O2012 Sigma-Aldrich Co. LLC. All rights reserved. SIGMA and SIGMA-ALDRICH are trademarks of Sigma-Aldrich Co. LLC, registered in the US and other countries. Where bio begins is a trademark of Sigma-Aldrich Co. LLC.

SIGMA-ALロRICH

LABCO L.L.C.

Cell Culture Equipment

Cell Culture Equipment

Anaerobic Culture

Hypoxia chamber glove box

The hypoxia chamber glove box is ideal for tissue culture work, including tumor cell and stem cell research. The hypoxia chamber features a color operated "Touch Screen" control panel for automatically controlling oxygen levels, temperature levels, and carbon dioxide levels.

- O_{2} sensor and CO_{2} sensor
- Platinum RTD with sealing gland
- $\mathrm{N}_{2}, \mathrm{CO}_{2}$, and O_{2} gas hook-up
- Thermoelectric assembly(Peltier device)
- password protected, configurable PID control
- Configurable for up to six individually controlled sampling chambers
- CO_{2} range: 0-20\%
- CO_{2} accuracy: 0.2%

Z736848-1EA

Innoculation

Glass spreaders

For inoculating petri dishes
Constructed of 4 mm diameter glass rod with polished ends, with 130 mm long handles and 50 mm long spreader segments.

120 deg bend (top) and 90 deg bend (bottom)

- 90° bend
S4522-6EA 6ea
- 120° bend

S4647-6EA	6 ea

Greiner PS inoculating loop

Note: Disposable inoculating loop; hydrophobic

- disposable inoculating loop, polystyrene, $10 \mathrm{uL}, 200 \mathrm{~mm}$, blue

Z642991

Lazy-L Spreader ${ }^{\text {TM }}$

Lazy-L-Spreaders disposable microbiological spreaders provide an economical alternative to bending glass rods or pipets for spreading samples on agar surfaces and filters in Petri dishes. They are supplied sterile - no need to flame sterilize or autoclave.

- unlike glass spreaders, durable polystyrene Lazy-L spreaders are non-breakable and pose no safety hazard
- L-shaped for convenient "lazy" spreading; just turn the Petri dish for smooth, even sample distribution
- smooth spreading surface and a slight upward turn reduce the chance that the spreader will dig into agar
- presterilization eliminates flaming or autoclaving and reduces risk of contamination
- no more time spent bending glass rods or waiting for glass or metal spreaders to cool before use!
Lazy-L spreaders are an alternative to bending glass rods or pipettes. Because they are sterile, no flaming or autoclaving is required. Turn the dish $360^{\circ} \mathrm{C}$ to provide smooth, even sample distribution.

- 10 per pouch

Z376779-1PAK

Culture Dishes

Anaerobe jar inset for petri disks

- for microbiology

Integrated holding clip for the Anaerobe Indicator Test strips.

Diameter: approximately 90 mm
Height: approximately 200 mm
Capacity: 12 Standard Petri dishes
Additional plate carrier for AnaeroJar (Fluka 28029) for 12 petri dishes.

68886

Anaerobic atmosphere generation bags

- Anaerobe gas generation bags for microbiology

The anaerobic atmosphere generation bags are highly innovative products designed to safely and speedily create optimum conditions for the growth of anaerobic organisms. No water is added, no hydrogen is produced, and no catalyst is required. The anaerobic atmosphere is completed within 30 minutes.
$68061-10$ SACHETS-F 10 sachets

Anaerobic jar

- for microbiology

Atmosphere Generation System
Supplied complete with jar base of 2.5 litre capacity and a lid which is secured to the base by four clips which allow self-venting. The lid incorporates a carrying handle and vacuum release feature. A plate carrier is included.

Anaerobe atmosphere generation bags (Fluka No 68061) are not included.
28029-1EA-F 1 ea

Corning ${ }^{\circledR}$ square bioassay dishes

Certified non-pyrogenic, these dishes are 245 mm square. They are packed with a lid and are designed with a stacking bead so that they will stack securely without slipping.

- without handles, TC treated, square

CLS431110-4EA	4 ea
CLS431110-16EA	16 ea

- without handles, not TC treated, square

Dish uses include large-scale colony-counting and plaque-lifting, microbial assays, hybridizations

CLS431111-4EA	4 ea
CLS431111-16EA	16 ea

- with handles, not TC treated, square
CLS431272-16EA 16 ea
- low profile, without handles, not TC treated, square
CLS431301-20EA 20 ea

Greiner dishes

Greiner petri dishes afford distortion-free optical surfaces for easy microscope viewing and are suitable for all bacteriological uses. These petri dishes are manufactured under controlled low bioburden conditions ensuring all general bacteriological standards and requirements are met. suitable for (bacteriological applications)

tissue culture dish; cell culture dish; culture dish square dish, $120 \times 120 \times 17 \mathrm{~mm}$, vented

Z617679-240EA
240 ea
bacterial culture dish; culture dish petri dish, $94 \times 16 \mathrm{~mm}$, triple vented
Z617636-480EA 480 ea

- bacterial culture dish; culture dish petri dish, 100 x 15 mm , vented, heavy design

Z666246-420EA	420 ea
petri dish, $35 \times 10 \mathrm{~mm}$, triple vented	
P5112-740EA	740 ea

petri dish, $60 \times 15 \mathrm{~mm}$, vented (6 vents)
P5237-600EA
600 ea
petri dish, $94 \times 16 \mathrm{~mm}$, non-vented, heavy design
P5362-480EA 480 ea
petri dish, $100 \times 15 \mathrm{~mm}$, triple vented, heavy design

P5612-420EA	420 ea

petri dish, $100 \times 20 \mathrm{~mm}$, vented
P5737-360EA 360 ea
petri dish, $145 \times 20 \mathrm{~mm}$, triple vented
P5487-120EA 120 ea

Nunc ${ }^{\circledR}$ petri dishes

Nunc ${ }^{\oplus}$ Lab-Tek ${ }^{\oplus}$ and standard petri dishes are optimized for culturing fungi, bacteria and other microorganisms in addition to supporting automated high-throughput (HTS) applications.

- For culturing of fungi, bacteria and other microorganisms
- Contact dish useful for sampling in hospital environments (for research use only), as well as in food science and the pharmaceutical industry
- Perform well in automatic dispensers due to complete flatness and uniform height
- Available with a moulded grid
- Deep Petri Dishes allow for longer culture periods
- Compatible with automated systems

Nunclon ${ }^{\circledR}$ cell culture dishes

- Large range available, treated for cell culture but with many other uses
- Optically clear and very flat for use in microscope
- Non-toxic
- Certified surface treatment for optimal cell attachment and growth
round

D7804-500EA	500 ea
D8054-1CS	1 case
Petri dishes, polystyrene	

Designed for easy one hand opening and closing, edges of tops and bottoms are squared off to provide a firm sure grip. Flare and length of lid skirt allows lid to be removed and replaced easily. Dishes have three venting ribs on the underside of the lid to prevent condensation build up.

Optically clear with consistently flat bottoms

- beveled stacking rings
P5481-500EA 500 ea
- beveled stacking rings
P5731-500EA 500 ea
- beveled stacking rings
P5606-400EA 400 ea
- vertical stacking rings

Note: The actual nominal dimensions of these plates possess an inner diameter of 88 mm and an outer diameter with lid of 92.4 mm .

P5856-500EA	500 ea
ringless for easy sliding	
P5981-100EA	100 ea

- compartmentalized I-dish with beveled stacking rings
P6106-500EA 500 ea
- compartmentalized I-dish with vertical stacking rings

P6231
-compartmentalized with vertical stacking rings
P6481

Petri-Pad culture dish system

A complete system for growing microorganisms on a "solid" surface with liquid broth media. Just add sterile broth to saturate the pure absorbent cellulose pad, and the dish is ready. Dishes without pads can be used for agar-based solid media.
The dishes are optically clear polystyrene with lips on both the base and the cover for easy one-hand manipulation. There is a frosted area on the bottom for marking. The 47 mm diameter allows culturing on standard-size filter membranes.

- Complete unit

Unit consists of a 47 mm culture dish and one Millipore pure cellulose Petri-Pad

C6695-500EA	500 ea
culture dishes only	
C6570-100EA	

TPP tissue culture dishes

Innovative features and outstanding cell growth properties make the TPP tissue culture dishes the ideal choice for adherent cell culture in research and industry. These optically clear, high-grade polystyrene tissue culture dishes are tissue culture treated only on the base of the dish with a non-treated ring surrounding the growing surface to prevent cell attachment on the edge. A serrated ring around the bottom culture dish makes pick-up and handling of the dishes safe and easy, while also minimizing the risk of dropping dishes due to lid/base disassembly.

A special stacking ring, with spaces for a numeric scale $(12,3,6,9)$ set on the periphery, allows for safe and stable stacking of these tissue culture dishes. The numeric scale serves to ease locating areas of examination while the spaces they create in the stacking ring reduce condensation between stacked dishes and prevent the tissue culture dishes from sticking together.

Two marking areas, located on the top dish wall (yellow) and the bottom dish wall (frosted), act as a reference for top/bottom alignment and orientation. There are also six special stops built into the lid which facilitate optimal gas exchange during incubation.
Features:

- Every batch tested for cell growth characteristics
- Outstanding flatness and optical clarity for microscopic examination
- Unique serrated edge on bottom dish makes handling safe and easy
- Double writing surface
- Numeric scale in lid divides viewing area into quadrants to aid in examination
- Dishes are packaged in easy "peel-off" wrapping
- Guaranteed sterile by gamma irradiation

Z707651-900EA	900 ea
	840 ea
Z707678-840EA	
	240 ea
Z707686-240EA	100 ea
Z707694-100EA	

Detection/Counting

Bright-Line ${ }^{\text {TM }}$ Hemacytometer

H-shaped moat forms two cell-counting areas. The surface features enhanced Neubauer rulings. Replacement cover slips sold separately.
Supplied with two cover slips.

Bright-Line ${ }^{\text {TM }}$ Hemacytometer replacement cover slip
Z375357-1EA 1 ea

Scienceware ${ }^{\circledR}$ colony counter system

- Complete system

Counting colonies and plaques on culture plates is simple, accurate, and easy on the eyes. The pen-style counter marks, counts, and beeps to confirm each touch. Select count-up, count-down, or error-correction mode. Felt tip markers (one red and one black provided) make water-resistant marks on glass and plastic; alcohol removes marks. The mini light box has a removable grid to assist counting. The freestanding $1.75 \times$ mini magnifier enhances the view while it leaves both hands free. All components can be ordered separately and have their own independent laboratory applications.

Z367893

- Pen style colony counter

Z367850

- Replacement tip for colony counter

For Manostat Colony counter

Z378518-1EA

- Mini light box

Provides a $4 \times 5 \mathrm{in}$. $(10 \times 12.5 \mathrm{~cm})$ viewing area.
Z367869-1EA

- Magnifier for mini light box, free-standing

This free standing magnifier allows enhanced viewing of slides, petri dishes, multi-well plates, gels or text. The precision molded lens offers 1.75 magnification. The unique stand allows the magnifier to be placed over a variety of objects, including the Mini Light Box. Dimensions: lens $104.8 \times 142.9 \mathrm{~mm}(41 / 8 \times 55 / 8 \mathrm{in}$.), stand 171.8 mm ($63 / 4 \mathrm{in}$.) high.
Z367885-1EA

Scienceware ${ }^{\circledR}$ plate reader

- Easy, magnified viewing; hands-free
- For microplates, view color changes and locate cells for further analysis
- For petri dishes, view cell growth and take advantage of hands-free design to make notes and isolate cell colonies
- Ideal for evaluating monolayer cell growth The plate reader has a clear deck for resting plates and a large, clear, adjustable mirror for viewing their underside. This tool allows safe examination of the bottom of the plates without risking spills on the face and eyes. It is ideal for Hemagglutination, Hemagglutination Inhibition, Hemolysis and Agglutination testing. Other applications include counting of bacterial cell cultures for colony or plaque growth. Mirror magnification is 3 X actual plate size. Polypropylene with an acrylic deck.

P7613-1EA 1 ea

Microscopes

Jenco ${ }^{\text {TM }}$ compound microscopes, JC series Brightfield infinity plan, achromatic

3 zoom ranges in either 45 or 60 degree

 inclination:GL6 Series GL7 Series GL9 Series
Zoom Ratio 6.5:1 7:1 9:1
Zoom Range 1.0X-6.5X 0.65X-4.5X 0.65X-6.0X
A long (100 mm) working distance on all 3 models.
Achieve a working distance of 260 mm with optional auxiliary lenses.
binocular

Z736945-1EA	1 ea
trinocular	
Z737062-1EA	1 ea
binocular	
Z734977-1EA	1 ea

- trinocular
Z735086-1EA 1 ea

Jenco ${ }^{\text {TM }}$ compound microscopes, Utility series
3 Plug
3 zoom ranges in either 45 or 60 degree inclination:
GL6 Series GL7 Series GL9 Series
Zoom Ratio 6.5:1 7:1 9:1
Zoom Range 1.0X-6.5X 0.65X-4.5X 0.65X-6.0X
A long (100 mm) working distance on all 3 models.
Achieve a working distance of 260 mm with optional auxiliary lenses.

- brightfield, infinity eplanachromatic lens, binocular; 20 W halogen bulb
Z735299-1EA 1 ea
- brightfield, achromatic lens, monocular; 20 W halogen bulb

Z735183-1EA

Jenco ${ }^{\text {Tm }}$ compound microscopes

Science teachers cannot expend their entire budget on microscopes or sacrifice quality on such an integral tool, so Jenco ${ }^{\text {TM }}$ keeps prices low, quality high and offers selection to provide them affordable options. Jenco ${ }^{\text {TM }}$ brand microscopes virtually eliminate downtime and our optics facilitate student throughput.
Choose from different frames for the right reason and teach science with the right equipment for your students.

- Illumination can be a mirror, a rechargeable LED, an incandescent bulb or halogen bulb
- Eye pieces come in monocular heads, or teaching heads for assisting students in finding specimens and also binocular heads for easy viewing with both eyes
- Objectives are offered in multiple quality and quantity levels
- Video systems are available to project images on a screen
Industry leading 5 year warranty 3-plug

3 zoom ranges in either 45 or 60 degree inclination:

GL6 Series GL7 Series GL9 Series
Zoom Ratio 6.5:1 7:1 9:1
Zoom Range 1.0X-6.5X 0.65X-4.5X 0.65X-6.0X
A long (100 mm) working distance on all 3 models. Achieve a working distance of 260 mm with optional auxiliary lenses.

Left to Right: Z735086, Z735299, Z735418

- brightfield, achromatic lens, monocular, fixed stage; LED or 20 W incandescent or fluorescent

Z735418-1EA
1 ea
brightfield, achromatic lens, monocular, mechanical stage; LED incandescent or fluorescent

Z735515-1EA
1 ea

- brightfield, achromatic lens, monocular, mechanical stage; LED or other illumination

Z735620-1EA

- brightfield, achromatic lens, binocular, mechanical stage; LED or other illumination
Z735744-1EA 1 ea
- brightfield, semi-planachromatic lens, monocular; 20w halogen bulb
EU 2-prong plug
Z737178-1EA 1 ea
- brightfield, semi-planachromatic lens, binocular; 20w halogen bulb

EU 2-prong plug
Z737275-1EA 1 ea

- brightfield, achromatic lens, monocular, fixed stage; led or 20w incandescent or fluorescent
EU 2-prong plug
Z737380-1EA 1 ea
- brightfield, achromatic lens, monocular, mechanical stage; led incandescent or fluorescent EU 2-prong plug
Z737496-1EA 1 ea
- brightfield, achromatic lens, monocular, mechanical stage; led or other illumination

EU 2-prong plug
Z737607-1EA 1 ea

- brightfield, achromatic lens, binocular, mechanical stage; led or other illumination

EU 2-prong plug
Z737712-1EA
1 ea

Canon ${ }^{\circledR}$ EOS Rebel ${ }^{\circledR}$ T1i digital SLR camera body, no lens, for Jenco ${ }^{\text {TM }}$ inverted compound microscopes NEW
15.1 Mp CMOS Sensor

HD 1080p, 720p, and VGA Video Capture
3 in. Clear View LCD with Live View
DIGIC 4 Image Processor
ISO Expandable to 12,800
EF-S $18-55 \mathrm{~mm}$ f/3.5-5.6 IS Lens
Compatible w/ 60-plus EF \& EF-S Optics
Z570001-1EA 1 ea

Color video camera for Jenco ${ }^{\text {TM }}$ inverted compound microscopes New
Jenco ${ }^{\text {TM }}$ offers camera systems for documenting resolved microscopic images from inverted compound microscopes
Each system is fully integrated with:

- software for image analysis
- optical adapters to obtain the image in the correct focal plane
- cables for connection to computers, monitors or projectors

5 Megapixel, CMOS, with USB 2.0 cable, optical adapter and measurement software
Z569992-1EA

Jenco ${ }^{\text {TM }}$ inverted compound microscopes

Jenco ${ }^{T M}$ introduces a high optical standard on a versatile frame at budget conscious levels The long working distance condenser (50 mm) and objectives (six supplied) provide brilliant resolved images in both phase contrast and brightfield techniques. The condenser swings out to accommodate roller bottles or other large cultivation vessels.

- Affordable - Jenco ${ }^{\text {™ }}$ delivers exacting performance for routine research without consuming your budget
- Versatile - trinocular body for image documentation; condenser design for observation of virtually all vessel types; mechanical stage with inserts for well plates and petri dishes; three objectives each for both phase contrast and brightfield
- Durable - an all metal frame with an all metal focusing mechanism ensures this instrument will perform well beyond the industry leading 5 Year Warranty
- 230 V units are CE Compliant

Key Specifications:

Optical body - Seidentopf design inclined 30°; 55 to 75 mm interpupillary adjustment, 360° rotation
Nosepiece - quintuple, ball bearing
Eye pieces - 10X, Focal Length 25 mm , FN 20 mm . Focus mechanism - adjustable tension control to prohibit drift and adjustable up-stop to protect
objective lenses; dial markings at 0.002 mm increments
Condenser - 1.25 N.A. 2 element Abbe with iris diaphragm and rack and pinion focusing; 55mm working distance, swing out working distance is 3 inches
Kohler Illumination, field diaphragm, 30 watt, 6 volt Halogen bulb with electronic dimmer Mechanical stage: (WHD) (in/cm) 8.25×8.875 / 20.95×22.54; Right-hand Coaxial dropdown X-Y Control Knobs; Four Inserts for: well plates ($13 \times$ 8 cm and $8 \times 5 \mathrm{~cm}$) petri dish (6.8 cm diam.) and slides ($7.5 \times 3.5 \mathrm{~cm}$ and $7.5 \times 2.5 \mathrm{~cm}$)

Dimensions: (WHD) (in/cm) $9 \times 22.5 \times 21.5 / 22.86 \times$ 57.15×54.61; Gross Weight: (lb/kg) 50/22.7
Microscope Includes: the six objectives in the table, dust cover, three color filters, spare halogen lamp and fuse, phase centering telescope, phase annulus sliders and instruction manual

3 zoom ranges in either 45 or 60 degree

 inclination:GL6 Series GL7 Series GL9 Series
Zoom Ratio 6.5:1 7:1 9:1
Zoom Range 1.0X-6.5X 0.65X-4.5X 0.65X-6.0X
A long (100 mm) working distance on all 3 models. Achieve a working distance of 260 mm with optional auxiliary lenses.

Z723975
-30W halogen bulb
Z723975-1EA 1 ea
-30W halogen bulb
Z724084-1EA 1 ea

Slides

Slides, microscope

Sealed in a moisture absorbing desiccant pack which can function as a drying stand and a storage box. Slides are 1 mm thick.

Microscope slides with one frosted end (\$8400)

- Frosted one end

S8400-1PAK	1 pkg
S8400-1CS	1 case
Opaque (white)	
S9027-1PAK	1 pkg
S9027-1CS	1 case
Plain	
S8902-1PAK	1 pkg
S8902-1CS	1 case

Corning ${ }^{\oplus}$ microscope slides, frosted one side, one end Corning ${ }^{\oplus} 2948$

These 3×1 inch Corning ${ }^{\circledR}$ microscope slides are made from water-white glass to maximize clarity and are frosted at one end on only one side. Slides are 0.9 to 1.10 mm thick. Corning ${ }^{\circledR}$ frosted slides are highly legible and easy to write on because they are sandblasted instead of etched. To minimize waste, they are inspected for chips and rough edges before being packaged.
Products are packaged in 1/2 gross boxes (approx. 72 slides each).
10 gross $=20$ boxes (1440 slides total)
Note: This product is discontinued;
replacement product is CLS294875X25
CLS29483X1-1440EA 1440 ea

Corning ${ }^{\circledR}$ microscope slides, plain

These $75 \times 25 \mathrm{~mm}$ Corning ${ }^{\oplus}$ microscope slides are made from water-white glass to maximize clarity and are not frosted. Slides are 0.9 to 1.10 mm thick.
Products are packaged in $1 / 2$ gross boxes (approx. 72 slides each).
10 gross $=20$ boxes (1440 slides total)
Note: This is the suggested replacement for CLS29473X1

CLS294775X25-72EA	72 ea
CLS294775X25-1440E	1440 ea

Dynamic 3D Cell Culture

3D Perfusion Bioreactor

The transition towards 3D cell culture is revolutionizing traditional cell culture around the world. 3D cell culture provides a more in vivo like environment, thereby allowing the cellular responses from cells cultured in 3D to be more realistic. Furthermore, studies have demonstrated cells grow significantly better under dynamic culture conditions as a result of the continuous cycling of nutrients, as well as the removal of metabolic wastes. In some instances, the shear force produced by the flowing medium can act as a mechanical stimuli signal that further promotes stem cell differentiation toward certain cell lineages.

Perform Dynamic Cell Culture Using 3D Biotek's Novel 3D Perfusion Bioreactor and Your Choice of 3D Insert ${ }^{\mathrm{TM}}$

As the leader in providing 3D cell culture products and technologies, 3D Biotek is proud to introduce its novel 3D Perfusion Bioreactor. This unique 3D Bioreactor is a perfect combination of 3D cell culture and dynamic cell culture technologies. The 3D Perfusion Bioreactor consists of multiple independent, autoclavable polycarbonate chambers. The chambers are interchangeable and specially designed to be compatible with 3D Insert scaffolds of varying sizes ranging from 96 -well to 6 -well. Cell culture medium is 100% perfused through the open porous structure of the scaffolds using a pulsatile pump. The entire unit, excluding the pump, is autoclavable and can be used as a single-use bioreactor system.

3D Insert Technology

Porous polymer scaffolds are engineered using 3D Biotek's Proprietary 3D Precision Microfabrication Technology and provide both a 3D cell culture environment as well as a significantly greater total cell growth area than traditional tissue culture plates. These scaffolds are available in both biodegradable (polycaprolactone, PCL - Figure A) and nonbiodegradable (polystyrene, PS) polymers.

3D Perfusion Bioreactor
The bioreactor consists of multiple independent, autoclavable polycarbonate chambers(4 chambers as shown in the picture).

Figure A. 3D Structure Parameters

3D Insert Structure

3D Insert Scaffold

3D Insert Scaffold (magnified 80X)

Chamber/Scaffolds Assembly

- The bioreactor consists of four independent, autoclavable polycarbonate chambers that hold up to 10 scaffolds each.
- The chambers are interchangeable and compatible with 3D Insert ${ }^{\text {TM }}-P C L$ scaffolds ranging in size from 96-well to 6-well.
- Within each chamber there is a 1.5 mm distance separating each scaffold. This
distance, combined with the offset fiber configuration, ensures the perfusion of medium. Slow perfusion of both sterile CO_{2} and medium is achieved with a low pump speed at the same time.
- Chambers containing scaffolds can be easily removed and disassembled.
- The entire unit (except for the pump) is autoclavable and can be used as a singleuse bioreactor system.

jiomolecules

Bioguarantee.

> Sigma Life Science offers a collection of more than 50,000 antibodies, all 100\% Bioguaranteed.*
> Find the antibody you need:
> sigma.com/antibodyexplorer

[^1]
Sigma-Aldrich ${ }^{\circ}$ Worldwide Offices

Argentina
Free Tel: 08108887446
Tel: (+54) 1145561472
Fax: (+54) 1145521698

Australia

Free Tel: 1800800097 Free Fax: 1800800096 Tel: (+61) 298410555 Fax: (+61) 298410500

Austria

Tel: (+43) 16058110
Fax: (+43) 16058120

Belgium

Tel: (+32) 38991301
Fax: (+32) 38991311

Brazil

Free Tel: 08007017425
Tel: (+55) 1137323100
Fax: (+55) 1155229895

Canada

Free Tel: 18005651400
Free Fax: 18002653858
Tel: (+1) 9058299500
Fax: (+1) 9058299292
Chile
Tel: (+56) 24957395
Fax: (+56) 24957396

People's Republic of China

Free Tel: 8008193336
Tel: (+86) 2161415566
Fax: (+86) 2161415567
Czech Republic
Tel: (+420) 246003200
Fax: (+420) 246003291

Denmark

Tel: (+45) 43565900
Fax: (+45) 43565905

Finland

Tel: (+358) 93509250
Fax: (+358) 935092555

France

Free Tel: 0800211408
Free Fax: 0800031052
Tel: (+33) 474822888
Fax: (+33) 474956808

Germany

Free Tel: 08005155000
Free Fax: 08006490000
Tel: (+49) 8965130
Fax: (+49) 8965131169

Hungary

Tel: (+36) 12359055
Fax: (+36) 12359068
India
Telephone
Bangalore: (+91) 8066219400
New Delhi: (+91) 1143588000
Mumbai: (+91) 2240872364
Pune: (+91) 2041464700
Hyderabad: (+91) 4030677450
Kolkata: (+91) 3340138000

Fax

Bangalore: (+91) 8066219550
New Delhi: (+91) 1143588001
Mumbai: (+91) 2225797589
Pune: (+91) 2041464777
Hyderabad: (+91) 4030677451
Kolkata: (+91) 3340138016
Ireland
Free Tel: 1800200888
Free Fax: 1800600222
Tel: +353(0) 40220370
Fax: + 353 (0) 40220375
Israel
Free Tel: 1800702222
Tel: (+972) 89484222
Fax: (+972) 89484200

Italy

Free Tel: 800827018
Tel: (+39) 0233417310
Fax: (+39) 0238010737

Japan

Tel: (+81) 357967300
Fax: (+81) 357967315
Korea
Free Tel: (+82) 800237111
Free Fax: (+82) 800238111
Tel: (+82) 313299000
Fax: (+82) 313299090
Luxembourg
Tel: (+32) 38991301
Fax: (+32) 38991311

Malaysia

Tel: (+60) 356353321
Fax: (+60) 356354116

Mexico

Free Tel: 018000075300
Free Fax: 018007129920
Tel: (+52) 7222761600
Fax: (+52) 7222761601
The Netherlands
Tel: (+31) 786205411
Fax: (+31) 786205421

New Zealand

Free Tel: 0800936666
Free Fax: 0800937777
Tel: (+61) 298410555
Fax: (+61) 298410500

Norway

Tel: (+47) 23176000
Fax: (+47) 23176010

Poland

Tel: (+48) 618290100
Fax: (+48) 618290120

Portugal

Free Tel: 800202180
Free Fax: 800202178
Tel: (+351) 219242555
Fax: (+351) 219242610

Russia

Tel: (+7) 4956215828
Fax: (+7) 4956216037

Singapore

Tel: (+65) 67791200
Fax: (+65) 67791822

Slovakia

Tel: (+421) 255571562
Fax: (+421) 255571564

South Africa

Free Tel: 0800110075
Free Fax: 0800110079
Tel: (+27) 119791188
Fax: (+27) 119791119

Spain

Free Tel: 900101376
Free Fax: 900102028
Tel: (+34) 916619977
Fax: (+34) 916619642

Sweden

Tel: (+46) 87424200
Fax: (+46) 87424243

Switzerland

Free Tel: 0800800080 Free Fax: 0800800081
Tel: $(+41) 817552511$
Fax: (+41) 817565449
Thailand
Tel: (+66) 21268141
Fax: (+66) 21268080
United Kingdom
Free Tel: 0800717181
Free Fax: 0800378785
Tel: (+44) 1747833000
Fax: (+44) 1747833313

United States

Toll-Free: 8003253010
Toll-Free Fax: 8003255052
Tel: (+1) 3147715765
Fax: (+1) 3147715757

Vietnam

Tel: (+84) 835162810
Fax: $(+84) 862584238$

Internet

sigma-aldrich.com

Enabling Science to
Improve the Quality of Life

Order/Customer Service (800) 325-3010 • Fax (800) 325-5052
Technical Service (800) 325-5832 - sigma-aldrich.com/techservice
Development/Custom Manufacturing Inquiries SAFC' (800) 244-1173
Safety-related Information sigma-aldrich.com/safetycenter

World Headquarters 3050 Spruce St.
St. Louis, MO 63103
(314) 771-5765
sigma-aldrich.com

[^2]Sigma-Aldrich website at www.sigmaaldrich.com and/or on the reverse side of the invoice or packing slip.

[^0]: Sigma and Sigma-Aldrich are registered trademarks of Sigma-Aldrich Co.

[^1]: *Experimental results must be submitted via the Antibody Bioguarantee Form within 12 months of the date of purchase. All required fields of the Antibody Bioguarantee Form must be completed. Refunds and replacements contingent to claim review by technical service team. Credit covers the cost of antibody. Product replacements depend on product availability.
 ©2012 Sigma-Aldrich Co. LLC. All rights reserved. SIGMA and SIGMA-ALDRICH are trademarks of Sigma-Aldrich Co. LLC, registered in the US and other countries. Where bio begins is a trademark of Sigma-Aldrich Co. LLC.

[^2]: 02012 Sigma-Aldrich Co. LLC. All rights reserved. SIGMA, SAFC, SIGMA-ALDRICH, ALDRICH, SUPELCO, LOOKOUT and E-TOXA-CLEAN are trademarks of Sigma-Aldrich Co. LLC, registered in the US and other countries. FLUKA is a trademark of Sigma-Aldrich GmbH , registered in the US and other countries. HYBRI-MAX and E-TOXATE are trademarks of Sigma-Aldrich Co, LLC CORNING is a registered trademark of Corning, Inc. NUNC, LAB-TEK, and NUNCLON are registered trademarks of Thermo Fisher Scientific, Inc. or its subsidiaries. SCIENCEWARE is a registered trademark of Bel-Art Products. CANON and EOS REBEL
 are registered trademarks of Canon Kabushiki Kaisha Corporation. CHLOROMYCETIN is a trademark of Parkdale Pharmaceuticals, Inc. VENOR is a trademark of Minerva Biolabs GmbH. LAZY-L SPREADER is a
 are registered trademarks of Canon Kabushiki Kaisha Corporation. CHLOROMYCETIN is a trademark of Parkdale Pharmaceuticals, Inc. VENOR is a trademark of Minerva Biolabs GmbH. LAZY-L SPREADER is a
 trademark of Excel Scientific, Inc., BRIGHT-LINE is a trademark of Cambridge Instruments, Inc. JENCO is a trademark of Jenco International, Inc. $3 D$ INSERT is a trademark of \#D Biotek, LLC. Sigma brand products
 are sold through Sigma-Aldrich, Inc. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see product information on the

